Unveiling the Spatial-Temporal Characteristics and Driving Factors of Greenhouse Gases and Atmospheric Pollutants Emissions of Energy Consumption in Shandong Province, China

Author:

He Guangyang1,Jiang Wei12,Gao Weidong1,Lu Chang1

Affiliation:

1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China

2. College of Geography and Environment, Shandong Normal University, Jinan 250358, China

Abstract

As the largest energy-consuming province in China, Shandong faces the dual task of greenhouse gas (GHG) reduction and atmospheric pollution control. Based on the latest activity data and updated emission factors, this study establishes a high-resolution emission inventory (5 km × 5 km) for GHGs and main atmospheric pollutants from the energy consumption sectors of Shandong Province from 2010 to 2021, quantifies the relationship between social economic factors and GHGs and atmospheric pollutants emissions using the expanded stochastic environmental impact assessment (STIRPAT) model, and forecasts the future emission trend with the help of the scenario analysis method. Results indicate that the electricity and transportation sectors are the main contributors to all pollutants. Spatially, the high value of pollutants is mainly concentrated in the urban agglomerations of central and eastern Shandong. Up to 72% of GHGs and 50% of air pollution emissions are attributed to the top 10% of emission grids. Emission peaks occur mainly in summer and winter due to straw burning, increased utilization of temperature-controlled facilities, and expansion of plant capacity. Population, energy consumption, the proportion of secondary industry, and energy consumption intensity are the most significant influencing factors for pollutant emissions. Scenario analysis results indicate Shandong province can reach its carbon peak in 2027 without sacrificing population growth or economic progress.

Funder

Natural Science Foundation of the Shandong Province

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3