Influence of Humidity on the Acoustic Properties of Mushroom Mycelium Films Used as Sensitive Layers for Acoustic Humidity Sensors

Author:

Kuznetsova IrenORCID,Zaitsev BorisORCID,Krasnopolskaya Larissa,Teplykh Andrey,Semyonov Alexander,Avtonomova Anastasia,Ziangirova Mayya,Smirnov Andrey,Kolesov Vladimir

Abstract

The influence of humidity on the density, shear elastic module, viscosity, and thickness of the mushroom Pleurotus eryngii and Ganoderma lucidum mycelium films was studied. These data were obtained by comparing the theoretical and experimental frequency dependencies of the complex electrical impedance of bulk acoustic wave (BAW) resonator loaded by mycelium film using the least-squares method. This procedure was performed for the BAW resonator with pointed films for the relative humidity range of 17%–56% at the room temperature. As a result, the changes of the density, shear elastic module, viscosity, and thickness of the films under study, due to the water vapor adsorption, were determined. It has been established that the properties of mycelium films are restored after removing from the water vapor. So, these results show the possibility of using investigated mycelium films as sensitive layers for acoustic humidity sensors.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3