Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model

Author:

Stilmant Frédéric,Erpicum SebastienORCID,Peltier Yann,Archambeau PierreORCID,Dewals BenjaminORCID,Pirotton MichelORCID

Abstract

The discharge coefficient of an ogee crest is a function of the ratio of the effective head to the design head. The purpose of the present study is to derive a theoretical model of this relation, which does not depend on empirical coefficients and whose predictions over a wide range of head ratios are accurate enough for practical use. The developments consider unsubmerged ogee crests without approach flow or lateral contraction effects, heads large enough to enable surface tensions to be neglected, and heads small enough to avoid flow separation. The method is based on potential flow theory, depth integration in a curvilinear reference frame, and critical flow theory. The characteristics of the crest shape are defined by the trajectory of a free jet passing over the crest at the design head. The dimensionless equations show that the position of the critical section is not at the apex of the crest. Nevertheless, they also suggest an approximate equation at the apex of the crest from which the discharge coefficient is derived, together with the local water depth, velocity, and pressure distribution. The results compare well with experimental data for head ratios between 0 and 5, which validates the underlying assumptions of the theoretical model.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference39 articles.

1. Hydraulic Engineering of Dams;Hager,2020

2. Cavitation,1990

3. Hydraulic Design of Spillways,1990

4. Discussion of “Designing Spillway Crests for High-Head Operation”

5. Experimental Study of Ogee Crested Weir Operation Above the Design Head and Influence of the Upstream Quadrant Geometry;Erpicum;Proceedings of the 7th International Symposium on Hydraulic Structures,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3