Understanding Completeness and Diversity Patterns of OSM-Based Land-Use and Land-Cover Dataset in China

Author:

Wang ShuZhu,Zhou QiORCID,Tian YuanJian

Abstract

OpenStreetMap (OSM) data are considered essential for land-use and land-cover (LULC) mapping despite their lack of quality. Most relevant studies have employed an LULC reference dataset for quality assessment, but such a reference dataset is not freely available for most countries and regions. Thus, this study conducts an intrinsic quality assessment of the OSM-based LULC dataset (i.e., without using a reference LULC dataset) by examining the patterns of both its completeness and diversity. With China chosen as the study area, an OSM-based LULC dataset of the country was first generated and validated by using various accuracy measures. Both its completeness and diversity patterns were then mapped and analyzed in terms of each prefecture-level division of the country. The results showed the following: (1) While the overall accuracy was as high as 82.2%, most complete regions of China were not mapped well owing to a lack of diverse LULC classes. (2) In terms of socioeconomic factors and the number of contributors, higher correlations were noted for diversity patterns than completeness patterns; thus, the diversity pattern is a better reflection of socioeconomic factors and the spatial patterns of contributors. (3) Both the completeness and the diversity patterns can be combined to better understand an OSM-based LULC dataset. These results indicate that it is useful to consider diversity as a supplement for intrinsically assessing the quality of an OSM-based LULC dataset. This analytical method can also be applied to other countries and regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3