Abstract
Examining the relationships between vehicle crash patterns and urban land use is fundamental to improving crash predictions, creating guidance, and comprehensive policy recommendations to avoid crash occurrences and mitigate their severities. In the existing literature, statistical models are frequently used to quantify the association between crash outcomes and available explanatory variables. However, they are unable to capture the latent spatial heterogeneity accurately. Further, the vast majority of previous studies have focused on detailed spatial analysis of crashes from an aggregated viewpoint without considering the attributes of the built environment and land use. This study first uses geographic information systems (GIS) to examine crash hotspots based on two severity groups, seven prevailing crash causes, and three predominant crash types in the City of Dammam, Kingdom of Saudi Arabia (KSA). GIS-based geographically weighted regression (GWR) analysis technique was then utilized to uncover the spatial relationships of traffic collisions with population densities and relate it to the land use of each neighborhood. Results showed that Fatal and Injury (FI) crashes were mostly located in residential neighborhoods and near public facilities having low to medium population densities on highways with relatively higher speed limits. Distribution of hotspots and GWR-based analysis for crash causes showed that crashes due to “sudden lane deviation” accounted for the highest proportion of crashes that were concentrated mainly in the Central Business District (CBD) of the study area. Similarly, hotspots and GWR analysis for crash types revealed that “collisions between motor vehicles” constitute a significant proportion of the total crashes, with epicenters mostly stationed in high-density residential neighborhoods. The outcomes of this study could provide analysts and practitioners with crucial insights to understand the complex inter-relationships between traffic safety and land use. It can provide useful guidance to policymakers for better planning and effective management strategies to enhance safety at zonal levels.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献