A Hierarchical Matching Method for Vectorial Road Networks Using Delaunay Triangulation

Author:

Zuo Zejun,Yang Lin,An Xiaoya,Zhen Wenjie,Qian Haoyue,Dai Songling

Abstract

The primary objective of vectorial road network matching is to identify homonymous roads from two different data sources. Previous methods usually focus on matching road networks with the same coordinate system but rarely with different or unknown coordinate systems, which may lead to nontrivial and nonsystematic deviations (e.g., rotation angle) between homonymous objects. To fill this gap, this study proposes a novel hierarchical road network matching method based on Delaunay triangulation (DTRM). First, the entire urban road network is divided into three levels (L1, L2, L3) by using the principle of stroke. Then, the triangular meshes are constructed from L2, and the minimum matching unit (MMU) in the triangular mesh is used instead of the traditional “node-arc” unit to measure the similarity for the matching of L2. Lastly, a hierarchical matching solution integrating the probabilistic relaxation method and MMU similarity is yielded to identify the matching relationships of the three-level road network. Experiments conducted in Wuhan, China, and Auckland, New Zealand, show that the MMU similarity metrics can effectively calculate the similarity value with different rotation angles, and DTRM has higher precision than the benchmark probability-relaxation-matching method (PRM) and can correctly identify the most matching-relationships with an average accuracy of 89.63%. This study provides a matching framework for road networks with different or even unknown coordinate systems and contributes to the integration and updating of urban road networks.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Theoretical Link between Optimized Geospatial Conflation Models for Linear Features;ISPRS International Journal of Geo-Information;2024-08-29

2. Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation;Vehicles;2024-04-28

3. Three Dimensional Multi-Camera Multi-Target Re-identifications by 3D Point Cloud and Successive Convex Hull;2023 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM);2023-06-09

4. An iterative framework with active learning to match segments in road networks;Cartography and Geographic Information Science;2023-04-11

5. A new Voronoi diagram-based approach for matching multi-scale road networks;Journal of Geographical Systems;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3