Aggregation of Human Trophoblast Cells into Three-Dimensional Culture System Enhances Anti-Inflammatory Characteristics through Cytoskeleton Regulation

Author:

Seno Kotomi,Munakata Yasuhisa,Sano Michiya,Kawahara-Miki Ryouka,Takahashi Hironori,Ohkuchi AkihideORCID,Iwata Hisataka,Kuwayama Takehito,Shirasuna Koumei

Abstract

Background: Three-dimensional (3D) culture changes cell characteristics and function, suggesting that 3D culture provides a more physiologically relevant environment for cells compared with 2D culture. We investigated the differences in cell functions depending on the culture model in human trophoblast cells (Sw.71). Methods: Sw.71 cells were incubated in 2D monolayers or simple 3D spheroids. After incubation, cells were corrected to assess RNA-seq transcriptome or protein expression, and culture medium were corrected to detect cytokines. To clarify the role of actin cytoskeleton, spheroid Sw.71 cells were treated mycalolide B (inhibitor of actin polymerization) in a 3D culture. Results: RNA-seq transcriptome analysis, results revealed that 3D-cultured cells had a different transcriptional profile compared with 2D-cultured cells, especially regarding inflammation-related molecules. Although interleukin-6 (IL-6) mRNA level was higher in 3D-culured cells, its secretion levels were higher in 2D-cultured cells. In addition, the levels of mRNA and protein expression of regnase-1, regulatory RNase of inflammatory cytokine, significantly increased in 3D culture, suggesting post-translational modification of IL-6 mRNA via regnase-1. Treatment with mycalolide B reduced cell-to-cell contact to build 3D formation and increased expression of actin cytoskeleton, resulting in increased IL-6 secretin. Conclusion: Cell dimensionality plays an essential role in governing the spatiotemporal cellular outcomes, including inflammatory cytokine production and its negative regulation associated with regnase-1.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3