Toll-Like Receptor Agonists Modulate Wound Regeneration in Airway Epithelial Cells

Author:

Lewandowska-Polak Anna,Brauncajs Małgorzata,Jarzębska Marzanna,Pawełczyk Małgorzata,Kurowski Marcin,Chałubiński Maciej,Makowska Joanna,Kowalski Marek

Abstract

Background: Impaired regeneration of airway epithelium may lead to persistence of inflammation and remodelling. Regeneration of injured epithelium is a complex phenomenon and the role of toll-like receptors (TLRs) in the stimulation of respiratory virus products in this process has not been established. Objective: This study was undertaken to test the hypothesis that the wound repair process in airway epithelium is modulated by microbial products via toll-like receptors. Methods: Injured and not-injured bronchial epithelial cells (ECs) (BEAS-2B line) were incubated with the TLR agonists poly(I:C), lipopolisacharide (LPS), allergen Der p1, and supernatants from virus-infected epithelial cells, either alone or in combination with TLR inhibitors. Regeneration and immune response in injured and not-injured cells were studied. Results: Addition of either poly(I:C) or LPS to ECs induced a marked inhibition of wound repair. Supernatants from RV1b-infected cells also decreased regeneration. Preincubation of injured and not-injured ECs with TLR inhibitors decreased LPS and poly(I:C)-induced repair inhibition. TGF-β and RANTES mRNA expression was higher in injured ECs and IFN-α, IFN-β, IL-8, and VEGF mRNA expression was lower in damaged epithelium as compared to not-injured. Stimulation with poly(I:C) increased IFN-α and IFN-β mRNA expression in injured cells, and LPS stimulation decreased interferons mRNA expression both in not-injured and injured ECs. Conclusion: Regeneration of the airway epithelium is modulated by microbial products via toll-like receptors.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3