Differentiation of Adsorptive and Viscous Effects of Dietary Fibres on Bile Acid Release by Means of In Vitro Digestion and Dialysis

Author:

Naumann SusanneORCID,Schweiggert-Weisz Ute,Bader-Mittermaier Stephanie,Haller Dirk,Eisner Peter

Abstract

To explain the cholesterol-reducing effects of dietary fibres, one of the major mechanisms proposed is the reduced reabsorption of bile acids in the ileum. The interaction of dietary fibres with bile acids is associated with their viscous or adsorptive effects. Since these fibre characteristics are difficult to investigate in vivo, suitable in vitro methodologies can contribute to understanding the mechanistic principles. We compared the commonly used centrifugal approach with a modified dialysis method using dietary fibre-rich materials from different sources (i.e., barley, citrus, lupin, and potato). Digestion was simulated in vitro with oral, gastric, and small intestinal digestion environments. The chyme was dialysed and released bile acids were analysed by high-performance liquid chromatography. The centrifugation method showed adsorptive effects only for cholestyramine (reference material) and a high-fibre barley product (1.4 µmol taurocholic acid/100 mg dry matter). Alternatively, the dialysis approach showed higher values of bile acid adsorption (2.3 µmol taurocholic acid/100 mg dry matter) for the high-fibre barley product. This indicated an underestimated adsorption when using the centrifugation method. The results also confirmed that the dialysis method can be used to understand the influence of viscosity on bile acid release. This may be due to entrapment of bile acids in the viscous chyme matrix. Further studies on fibre structure and mechanisms responsible for viscous effects are required to understand the formation of entangled networks responsible for the entrapment of the bile acids.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3