Key Environmental Factors Controlling Planktonic Foraminiferal and Pteropod Community’s Response to Late Quaternary Hydroclimate Changes in the South Aegean Sea (Eastern Mediterranean)

Author:

Giamali Christina,Kontakiotis GeorgeORCID,Koskeridou EfterpiORCID,Ioakim Chryssanthi,Antonarakou Assimina

Abstract

A multidisciplinary study was conducted in order to investigate the environmental factors affecting the planktonic foraminiferal and pteropod communities of the south Aegean Sea. Aspects of the Late Quaternary paleoceanographic evolution were revealed by means of quantitative analyses of planktonic foraminiferal and pteropod assemblages (including multivariate statistical approach; principal component analysis (PCA)), the oxygen (δ18O) and carbon (δ13C) isotopic composition of planktonic foraminifera and related paleoceanographic (planktonic paleoclimatic curve (PPC), productivity (E-index), stratification (S-index), seasonality) indices, extracted by the gravity core KIM-2A derived from the submarine area between Kimolos and Sifnos islands. Focusing on the last ~21 calibrated thousands of years before present (ka BP), cold and eutrophicated conditions were identified during the Late Glacial period (21.1–15.7 ka BP) and were followed by warmer and wetter conditions during the deglaciation phase. The beginning of the Holocene was marked by a climatic amelioration and increased seasonality. The more pronounced environmental changes were identified during the deposition of the sapropel sublayers S1a (9.4–7.7 ka BP) and S1b (6.9–6.4 ka BP), with extremely warm and stratified conditions. Pteropod fauna during the sapropel deposition were recorded for the first time in the south Aegean Sea, suggesting arid conditions towards the end of S1a. Besides sea surface temperature (SST), which shows the highest explanatory power for the distribution of the analyzed fauna, water column stratification, primary productivity, and seasonality also control their communities during the Late Quaternary.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3