Inversion of the Thickness of Crude Oil Film Based on an OG-CNN Model

Author:

Jiang Zongchen,Ma Yi,Yang Junfang

Abstract

In recent years, marine oil spill accidents have occurred frequently, seriously endangering marine ecological security. It is highly important to protect the marine ecological environment by carrying out research on the estimation of sea oil spills based on remote sensing technology. In this paper, we combine deep learning with remote sensing technology and propose an oil thickness inversion generative adversarial and convolutional neural network (OG-CNN) model for oil spill emergency monitoring. The model consists of a self-expanding module for the oil film spectral feature data and an oil film thickness inversion module. The feature data self-expanding module can automatically select spectral feature intervals with good spectral separability based on the measured spectral data and then expand the number of samples using a generative adversarial network (GAN) to enhance the generalization of the model. The oil film thickness inversion module is based on a one-dimensional convolutional neural network (1D-CNN). It extracts the characteristics of the spectral feature data of oil film with different thicknesses, and then accurately inverts the oil film’s absolute thickness. In this study, emulsification was not a factor considered, the results show that the absolute oil thickness inversion accuracy of the OG-CNN model proposed in this paper can reach 98.12%, the coefficient of determination can reach 0.987, and the mean deviation remains within ±0.06% under controlled experimental conditions. In the model stability test, the model maintains relatively stable inversion results under the interference of random Gaussian noise. The accuracy of the oil film thickness inversion result remains above 96%, the coefficient of determination can reach 0.973, and the mean deviation is controlled within ±0.6%, which indicates excellent robustness.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3