D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance

Author:

Bae Heekyong R.12ORCID,Shin Su-Kyung12,Han Youngji12,Yoo Ji-Hyeon12,Kim Suntae3,Young Howard A.4ORCID,Kwon Eun-Young125

Affiliation:

1. Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea

2. Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea

3. Omixplus, LLC., Gaithersburg, MD 20850, USA

4. Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA

5. Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.

Funder

National Research Foundation of Korea

National Cancer Institute, CCR, CIL

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3