Field-Induced Transversely Isotropic Shear Response of Ellipsoidal Magnetoactive Elastomers

Author:

Chougale SanketORCID,Romeis DirkORCID,Saphiannikova MarinaORCID

Abstract

Magnetoactive elastomers (MAEs) claim a vital place in the class of field-controllable materials due to their tunable stiffness and the ability to change their macroscopic shape in the presence of an external magnetic field. In the present work, three principal geometries of shear deformation were investigated with respect to the applied magnetic field. The physical model that considers dipole-dipole interactions between magnetized particles was used to study the stress-strain behavior of ellipsoidal MAEs. The magneto-rheological effect for different shapes of the MAE sample ranging from disc-like (highly oblate) to rod-like (highly prolate) samples was investigated along and transverse to the field direction. The rotation of the MAE during the shear deformation leads to a non-symmetric Cauchy stress tensor due to a field-induced magnetic torque. We show that the external magnetic field induces a mechanical anisotropy along the field direction by determining the distinct magneto-mechanical behavior of MAEs with respect to the orientation of the magnetic field to shear deformation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3