Abstract
The present investigation deals with a comprehensive study on the production of aluminum based alloys with the incorporation of different alloying elements and their effect on its electrical conductivity and mechanical properties. Casting of pure aluminum with different concentration and combinations of alloying additives such as cupper (Cu), magnesium (Mg) and silver (Ag) were carried out using a graphite crucible. The as-cast microstructure was modified by hot rolling followed by different heat-treated conditions viz., annealing, normalizing, quenching, and age hardening. The mechanical properties and electrical conductivity of the produced heat-treated alloys sheets under various processing conditions were carried out using tensile testing, hardness, and electrical resistivity measurements. It was found that by increasing the alloying elements content, yield strength results increased significantly by more than 250% and 500% for the as rolled and 8 h aged Al-Cu-Mg alloy, respectively. On the other hand, the electrical conductivity reduces slightly with −14.6% and −16.57% for the as rolled and 8 h aged of the same Al-Cu-Mg alloy, respectively.
Funder
Researchers Supporting Project - King Saud University
Subject
General Materials Science
Reference34 articles.
1. Handbook of Aluminum. Vol. 2, Alloy Production and Materials Manufacturing;Totten,2003
2. Light Alloys—Metallurgy of the Light Metals;Polmear,1995
3. Ceramic nanofibers versus carbon nanofibers as a reinforcement for magnesium metal matrix to improve the mechanical properties
4. Heat Transfer;Holman,1990
5. Innovative approaches in domestic cable engineering
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献