Formation of ZrC–SiC Composites from the Molecular Scale through the Synthesis of Multielement Polymers

Author:

Bouzat Fabien,Lucas Romain,Leconte Yann,Foucaud Sylvie,Champavier Yves,Coelho Diogo Cristina,Babonneau FlorenceORCID

Abstract

In the field of non-oxide ceramic composites, and by using the polymer-derived ceramic route, understanding the relationship between the thermal behaviour of the preceramic polymers and their structure, leading to the mechanisms involved, is crucial. To investigate the role of Zr on the fabrication of ZrC–SiC composites, linear or hyperbranched polycarbosilanes and polyzirconocarbosilanes were synthesised through either “click-chemistry” or hydrosilylation reactions. Then, the thermal behaviours of these polymeric structures were considered, notably to understand the impact of Zr on the thermal path going to the composites. The inorganic materials were characterised by thermogravimetry-mass spectrometry (TG-MS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). To link the macromolecular structure to the organisation involved during the ceramisation process, eight temperature domains were highlighted on the TG analyses, and a four-step mechanism was proposed for the polymers synthesised by a hydrosilylation reaction, as they displayed better ceramic yields. Globally, the introduction of Zr in the polymer had several effects on the temperature fragmentation mechanisms of the organometallic polymeric structures: (i) instead of stepwise mass losses, continuous fragment release prevailed; (ii) the stability of preceramic polymers was impacted, with relatively good ceramic yields; (iii) it modulated the chemical composition of the generated composites as it led, inter alia, to the consumption of free carbon.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3