A Flexible 12-Lead/Holter Device with Compression Capabilities for Low-Bandwidth Mobile-ECG Telemedicine Applications

Author:

Pineda-López Flavio,Martínez-Fernández Andrés,Rojo-Álvarez José,García-Alberola Arcadi,Blanco-Velasco ManuelORCID

Abstract

In recent years, a number of proposals for electrocardiogram (ECG) monitoring based on mobile systems have been delivered. We propose here an STM32F-microcontroller-based ECG mobile system providing both long-term (several weeks) Holter monitoring and 12-lead ECG recording, according to the clinical standard requirements for these kinds of recordings, which in addition can yield further digital compression at stages close to the acquisition. The system can be especially useful in rural areas of developing countries, where the lack of specialized medical personnel justifies the introduction of telecardiology services, and the limitations of coverage and bandwidth of cellular networks require the use of efficient signal compression systems. The prototype was implemented using a small architecture, with a 16-bits-per-sample resolution. We also used a low-noise instrumentation amplifier TI ADS1198, which has a multiplexer and an analog-to-digital converter (16 bits and 8 channels) connected to the STM32F processor, the architecture of which incorporates a digital signal processing unit and a floating-point unit. On the one hand, the system portability allows the user to take the prototype in her/his pocket and to perform an ECG examination, either in 12-lead controlled conditions or in Holter monitoring, according to the required clinical scenario. An app in the smartphone is responsible for giving the users a friendly interface to set up the system. On the other hand, electronic health recording of the patients are registered in a web application, which in turn allows them to connect to the Internet from their cellphones, and the ECG signals are then sent though a web server for subsequent and ubiquitous analysis by doctors at any convenient terminal device. In order to determine the quality of the received signals, system testing was performed in the three following scenarios: (1) The prototype was connected to the patient and the signals were subsequently stored; (2) the prototype was connected to the patient and the data were subsequently transferred to the cellphone; (3) the prototype was connected to the patient, and the data were transferred to the cellphone and to the web via the Internet. An additional benchmarking test with expert clinicians showed the clinical quality provided by the system. The proposed ECG system is the first step and paves the way toward mobile cardiac monitors in terms of compatibility with the electrocardiographic practice, including the long-term monitoring, the usability with 12 leads, and the possibility of incorporating signal compression at the early stages of the ECG acquisition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3