Assessment of Heavy Metal Distribution and Health Risk of Vegetable Crops Grown on Soils Amended with Municipal Solid Waste Compost for Sustainable Urban Agriculture

Author:

Bhardwaj PallaviORCID,Sharma Rajesh Kumar,Chauhan AbhishekORCID,Ranjan AnujORCID,Rajput Vishnu D.ORCID,Minkina TatianaORCID,Mandzhieva Saglara S.ORCID,Mina Usha,Wadhwa Shikha,Bobde Prakash,Tripathi Ashutosh

Abstract

Rapid urbanization is one of the key factors that leads to defragmentation and the shrinking of agricultural land. It further leads to the generation of an ample amount of municipal waste. Several technologies have emerged in the past for its utilization, and in this regard, composting is one of the conventional approaches gaining popularity in modern agriculture. To overcome the possible criticality of intense urbanization, the concept of urban agriculture is taking shape. Municipal solid waste compost (MSWC) has been popularly explored for the soil amendments and nutritional requirements of crops. With this, the assessment of soil pollution (due to the heavy metals presently found in MSWC) is a required step for its safe application in agriculture. The present study aims at assessing the utilization of MSWC (in different ratios) to amend the soil and its impact on the growth and yield of brinjal (Solanum melongena), tomato (Solanum lycopersicum), and okra (Abelmoschus esculentus). The study also explored the uptake of heavy metals by plants and their risk to human consumption. The findings suggested that MSWC amendments upgraded the physio-chemical properties of soil, including organic matter (OM) and micronutrients, and increased the heavy metal concentrations in soil. Heavy metal analysis underlined the presence of several heavy metals both in soil and crops. Total metal concentration in soil increased with increased MSWC dosage. Concerning metal uptake by crop plants, 25% of MSWC was found to impart metal concentrations within permissible values in edible parts of crops. On the contrary, 50%, 75%, and 100% compost showed higher metal concentrations in the crops. A Health Risk Index (HRI) of less than 1 was found to be associated with soil amended with 25% MSWC. Our study implies that MSWC significantly improved the growth and yield of crops, and it can be considered an alternative to chemical fertilizer but only in a safer ratio (≤25%). However, further studies are required, especially on field conditions to validate the findings regarding metal accumulation.

Funder

Science and Engineering Research Board, Government of India

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3