Enhanced Effect of Mining Dust Diffusion on Melting of the Adjacent Glacier: A Case Study in Xinjiang, China

Author:

Zhang Zhiyi,Song YongzeORCID,Xu Xinyi,Hou Dazhong

Abstract

Given the typical disturbances in the aqueous environment in the alpine area because of mining activities in Northwest China, a case study highlighting the enhanced effect of mining dust diffusion on the melting of the adjacent glacier is presented here. Initially, a three-dimensional numerical model of the local airflow field was established by considering the effects of both mines and glaciers using the FLUENT software. Then, the diffusion path and size range of dust particles from the mines were simulated by feeding the mining dust parameters into the above numerical model. Finally, a physical simulation experiment was performed to evaluate the influence of mining dust coverage on the glaciers. The major conclusions of this study were as follows: (1) The local airflow field in the target alpine area is controlled by the ‘heat and cold double-island effects’ formed by the mine and the glacier, and the wind circulation always takes place in a clockwise direction between the mining pit on the left and the glacier on the right. (2) In a given airflow field, there is a spread of mining dust from the mine to the glacier along the upper airflow. The arrival rates of the dust are 16.9% and 13.3% in winter and summer, respectively, and the horizontal distance of dust diffusion is inversely proportional to its particle size. (3) For an ice sample with a sectional area of 225 cm2 and a volume of 1000 mL, the melting rate increased by 4.5 mL/h with an increase of dust coverage by 10%. Furthermore, when compared with a control group without dust cover, the effect of a 28% increase in dust coverage is approximately equivalent to the effect of a 1 °C increase in temperature on the ablation speed of the glacier. The study results can provide a useful reference for the selection of mining sites and the control of mining dust diffusion in alpine regions with glaciers, thereby facilitating environmentally friendly mining in alpine regions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Autonomous Region

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

1. Study of the Spatial Distribution Pattern of the Digital Glacial Geomorphology in China;Cheng;J. Glaciol. Geocryol.,2009

2. Qin, D.H. (2014). Glossary of Cryospheric Science, China Meteorological Press.

3. Advances in research on changes and effects of glaciers in Xinjiang mountains;Xu;Adv. Water Sci.,2020

4. Zhang, X., Liu, L., Zhang, Z., Kang, Z., Tian, H., Wang, T., and Chen, H. (2022). Spatial and Temporal Variation Characteristics of Glacier Resources in Xinjiang over the Past 50 Years. Water, 14.

5. Diagnosis and Analysis of Vertical Motion during Complex Topographical Heavy Snowfall;Ma;Chin. J. Atmos. Sci.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3