Analysis of the Formation Mechanism of Medium and Low-Temperature Geothermal Water in Wuhan Based on Hydrochemical Characteristics

Author:

Yin Zhibin12,Li Xuan13,Huang Changsheng1,Chen Wei1ORCID,Hou Baoquan4,Li Xiaozhe12,Han Wenjing12,Hou Pingping12,Han Jihong12,Ren Chonghe12,Zou Jin12,Hua Shan5,Xu Liansan5,Zhao Ziliang6

Affiliation:

1. Wuhan Center of Geological Survey CGS, Wuhan 430205, China

2. Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China

3. School of Environment Studies, China University of Geosciences, Wuhan 430074, China

4. Tianjin Municipal Engineering Design & Research Institute, Tianjin 300392, China

5. The Institute of Hydrogeology and Engineering Geology of Wuhan, Hubei Province Geological Survey, Wuhan 430051, China

6. Fourth Geological Team of Hubei Geological Bureau, Xianning 437100, China

Abstract

Wuhan and its surrounding areas have obvious geothermal spring outcrops, which are unexplored potential geothermal resources. The degree of geothermal resource development in Wuhan is low, and there is a lack of systematic research on their hydrochemical characteristics and formation mechanism. The Wuhan area is bounded by the Xiang-Guang fault, the South Qinling-Dabie orogenic belt in the north, and the Yangtze landmass in the south, with Silurian and Quaternary outcrops and little bedrock outcrops. The Silurian is the main water barrier in the region, which separates the upper Triassic and Paleogene as shallow aquifers and the lower Cambrian and Ordovician as deep aquifers. Different strata are connected by a series of fault structures, which constitute Wuhan’s unique groundwater water-bearing system. Eleven geothermal water (23~52 °C) and six surface water samples (around 22 °C) were collected from the study area. The geothermal water in the study area is weakly alkaline, with a pH of 7.04~8.24. The chemical type of geothermal water is mainly deep SO42− with a higher TDS and shallow HCO3− type water with a lower TDS. Isotopic analysis indicates that atmospheric precipitation and water-rock interaction are the main ionic sources of geothermal water. The chemical composition of geothermal water is dominated by ion-exchange interactions and the dissolution of carbonates and silicates. The characteristic coefficients, correlation analysis, water chemistry type, recharge elevation, geothermal water age, reservoir temperature, and cycle depth were also analyzed. The performance was similar in the same geothermal reservoir, which could be judged as an obviously deep and shallow geothermal fluid reservoir, and the genetic conceptual model of Wuhan geothermal was preliminarily deduced. DXR-8 and DXR-9 had the best reservoir conditions, hydrodynamic conditions, rapid alternation of water bodies, and large circulation depth, which is a favorable location for geothermal resource development and will bring considerable economic and social benefits.

Funder

Project of Jiangxi Geological Exploration Fund Project

Wuhan Multi factor Urban Geological Survey demonstration Project

China Geological Survey

Foundation of Nanchang Key Laboratory of Hydrogeology and High Quality Groundwater Resources Development and Utilization

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3