Abstract
Groundwater contaminant source identification is an endeavor task in highly developed areas that have been impacted by diverse natural processes and anthropogenic activities. In this study, groundwater samples from 84 wells in the pilot promoter region of the Yangtze River Delta integration demonstration zone in eastern China were collected and then analyzed for 17 groundwater quality parameters. The principal component analysis (PCA) method was utilized to recognize the natural and anthropogenic aspects impacting the groundwater quality; furthermore, the absolute principal component score-multiple linear regression (APCS-MLR) model was employed to quantify the contribution of potential sources to each groundwater quality parameter. The results demonstrated that natural hydro-chemical evolution, agricultural activities, domestic sewage, textile industrial effluent and other industrial activities were responsible for the status of groundwater quality in the study area. Meanwhile, the contribution of these five sources obtained by the APCS-MLR model were ranked as natural hydro-chemical evolution (18.89%) > textile industrial effluent (18.18%) > non-point source pollution from agricultural activities (17.08%) > other industrial activities (15.09%) > domestic sewage (4.19%). It is believed that this contaminant source apportionment result could provide a reliable basis to the local authorities for groundwater pollution management.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献