Pb(II) Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—A Green Approach

Author:

Sepehri Saloome,Kanani Elahe,Abdoli SimaORCID,Rajput Vishnu D.ORCID,Minkina TatianaORCID,Asgari Lajayer Behnam

Abstract

Nano zero-valent iron particles (nZVFe) are known as one of the most effective materials for the treatment of contaminated water. However, a strong tendency to agglomerate has been reported as one of their major drawbacks. The present study describes a green approach to synthesizing stabilized nZVFe, using biomass as a porous support material. Therefore, in the first step, biomass-derived activated carbon was prepared by thermochemical procedure from rice straw (RSAC), and then the RSAC-supported nZVFe composite (nZVFe–RSAC) was employed to extract Pb(II) from aqueous solution and was successfully synthesized by the sodium borohydride reduction method. It was confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) characteristics that the nZVFe particles are uniformly dispersed. Results of the batch experiments showed that 6 (g L−1) of this nanocomposite could effectively remove about 97% of Pb(II) ions at pH = 6 from aqueous solution. The maximum adsorption capacities of the RS, RSAC, and nZVFe–RSAC were 23.3, 67.8, and 140.8 (mg g−1), respectively. Based on the results of the adsorption isotherm studies, the adsorption of Pb(II) on nZVFe–RSAC is consistent with the Langmuir–Freundlich isotherm model R2=0.996). The thermodynamic outcomes exhibited the endothermic, possible, and spontaneous nature of adsorption. Adsorption enthalpy and entropy values were determined as 32.2 kJ mol−1 and 216.9 J mol−1 K−1, respectively. Adsorption kinetics data showed that Pb(II) adsorption onto nZVFe–RSAC was fitted well according to a pseudo-second-order model. Most importantly, the investigation of the adsorption mechanism showed that nZVFe particles are involved in the removal of Pb(II) ions through two main processes, namely Pb adsorption on the surface of nZVFe particles and direct role in the redox reaction. Subsequently, all intermediates produced through the redox reaction between nZVFe and Pb(II) were adsorbed on the nZVFe–RSAC surface. According to the results of the NZVFe–RSAC recyclability experiments, even after five cycles of recovery, this nanocomposite can retain more than 60% of its initial removal efficiency. So, the nZVFe–RSAC nanocomposite could be a promising material for permeable reactive barriers given its potential for removing Pb(II) ions. Due to low-cost and wide availability of iron salts as well as rice biowaste, combined with the high adsorption capacity, make nZVFe–RSAC an appropriate choice for use in the field of Pb(II) removal from contaminated water.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3