Synergistic Mechanism of Designing Information Granules with the Use of the Principle of Justifiable Granularity

Author:

Wang Dan1,Liu Yukang1,Yu Zhenhua1ORCID

Affiliation:

1. Institute of System Security and Control, School of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

The construction of information granules is a significant and interesting topic of Granular Computing (GrC) in which information granules play a vital role in representing and describing data, and it has become one of the most effective frameworks for solving complex problems. In this study, we are interested in the collaborative impacts of several different characteristics on constructing information granules, and a novel synergistic mechanism of the principle of justifiable granularity is utilized in developing information granules. The synergistic mechanism is finalized with a two-phase process—to start with, the principle of justifiable granularity and Fuzzy C-Means Clustering method are combined to develop a collection of information granules. First, the available experimental data is transformed (normalized) into fuzzy sets following the standard Fuzzy C-Means Clustering method. Then, information granules are developed based on the elements located in different clusters with the use of the principle of justifiable granularity. In the sequel, the positions of information granules are updated by considering the collaborative impacts of the other information granules with the parameters of specifying the level of influence. Experimental studies are conducted to illustrate the nature and feasibility of the proposed framework based on the synthetic data as well as a series of publicly available datasets coming from KEEL machine learning repositories.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

Natural Science Foundation of Shaanxi Province in China

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3