Shapley-Value-Based Hybrid Metaheuristic Multi-Objective Optimization for Energy Efficiency in an Energy-Harvesting Cognitive Radio Network

Author:

Bakshi Shalley1,Sharma Surbhi1,Khanna Rajesh1

Affiliation:

1. Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala 147005, Punjab, India

Abstract

Energy efficiency and throughput are concerns for energy-harvesting cognitive radio networks. However, attaining the maximum level of both requires optimization of sensing duration, harvested energy, and transmission time. To obtain the optimal values of these multiple parameters and to maximize the average throughput and energy efficiency, a new hybrid technique for multi-objective optimization is proposed. This hybrid optimization algorithm incorporates a Shapley value and a game theoretic concept into metaheuristics. Here, particle swarm optimization grey wolf optimization (PSOGWO) is selected as the source for the advanced hybrid algorithm. The concept of the unbiased nature of wolves is also added to PSOGWO to make it more efficient. Multi-objective optimization is formulated by taking a deep look into combined spectrum sensing and energy harvesting in a cognitive radio network (CSSEH). The Pareto optimal solutions for the multi-objective optimization problem of energy efficiency and throughput can be obtained using PSOGWO by updating the velocity with the weights. In the proposed Shapley hybrid multi-objective optimization algorithm, we used Shapley values to set up the weights that, in turn, updated the velocities of the particles. This updated velocity increased the ability of particles to reach a global optimum rather than becoming trapped in local optima. The solution obtained with this hybrid algorithm is the Shapley–Pareto optimal solution. The proposed algorithm is also compared with state-of-the-art PSOGWO, unbiased PSOGWO, and GWO. The results show a significant level of improvement in terms of energy efficiency by 3.56% while reducing the sensing duration and increasing the average throughput by 21.83% in comparison with standard GWO.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Effective Cognitive Radio Network Based Improved Differential Evolution Optimization in Energy Harvesting Scenarios;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks;Computer Modeling in Engineering & Sciences;2024

3. Multi-Objective Modified Glowworm Swarm Optimization Algorithm for Efficient Spectrum Sensing in the Cognitive Radio Network;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3