Optimizing Kidney Stone Prediction through Urinary Analysis with Improved Binary Particle Swarm Optimization and eXtreme Gradient Boosting

Author:

Alqahtani Abdullah1,Alsubai Shtwai2ORCID,Binbusayyis Adel1ORCID,Sha Mohemmed1ORCID,Gumaei Abdu2,Zhang Yu-Dong3ORCID

Affiliation:

1. Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

3. School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK

Abstract

Globally, the incidence of kidney stones (urolithiasis) has increased over time. Without better treatment, stones in the kidneys could result in blockage of the ureters, repetitive infections in the urinary tract, painful urination, and permanent deterioration of the kidneys. Hence, detecting kidney stones is crucial to improving an individual’s life. Concurrently, ML (Machine Learning) has gained extensive attention in this area due to its innate benefits in continuous enhancement, its ability to deal with multi-dimensional data, and its automated learning. Researchers have employed various ML-based approaches to better predict kidney stones. However, there is a scope for further enhancement regarding accuracy. Moreover, studies seem to be lacking in this area. This study proposes a smart toilet model in an IoT-fog (Internet of Things-fog) environment with suitable ML-based algorithms for kidney stone detection from real-time urinary data to rectify this issue. Significant features are selected using the proposed Improved MBPSO (Improved Modified Binary Particle Swarm Optimization) to attain better classification. In this case, sigmoid functions are used for better prediction with binary values. Finally, classification is performed using the proposed Improved Modified XGBoost (Modified eXtreme Gradient Boosting) to prognosticate kidney stones. In this case, the loss functions are updated to make the model learn effectively and classify accordingly. The overall proposed system is assessed by internal comparison with DT (Decision Tree) and NB (Naïve Bayes), which reveals the efficient performance of the proposed system in kidney stone prognostication.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3