Density of Some Special Sequences Modulo 1

Author:

Dubickas Artūras1ORCID

Affiliation:

1. Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Abstract

In this paper, we explicitly describe all the elements of the sequence of fractional parts {af(n)/n}, n=1,2,3,…, where f(x)∈Z[x] is a nonconstant polynomial with positive leading coefficient and a≥2 is an integer. We also show that each value w={af(n)/n}, where n≥nf and nf is the least positive integer such that f(n)≥n/2 for every n≥nf, is attained by infinitely many terms of this sequence. These results combined with some earlier estimates on the gaps between two elements of a subgroup of the multiplicative group Zm* of the residue ring Zm imply that this sequence is everywhere dense in [0,1]. In the case when f(x)=x this was first established by Cilleruelo et al. by a different method. More generally, we show that the sequence {af(n)/nd}, n=1,2,3,…, is everywhere dense in [0,1] if f∈Z[x] is a nonconstant polynomial with positive leading coefficient and a≥2, d≥1 are integers such that d has no prime divisors other than those of a. In particular, this implies that for any integers a≥2 and b≥1 the sequence of fractional parts {an/nb}, n=1,2,3,…, is everywhere dense in [0,1].

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Über die Gleichverteilung von Zahlen modulo Eins;Weyl;Math. Ann.,1916

2. Ein mengen-theoretischer Satz über Gleichverteilung modulo eins;Koksma;Compos. Math.,1935

3. Arithmetical properties of powers of algebraic numbers;Dubickas;Bull. Lond. Math. Soc.,2006

4. On the distance from a rational power to the nearest integer;Dubickas;J. Number Theory,2006

5. An unsolved problem on the powers of 3/2;Mahler;J. Aust. Math. Soc.,1968

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3