Dissecting Tether’s Nonlinear Dynamics during Covid-19

Author:

Maiti MoinakORCID,Grubisic ZoranORCID,Vukovic Darko B.

Abstract

The present study is on the five cryptocurrency daily mean return time series linearity dynamics during the Covid-19 period. These cryptocurrencies were chosen based on their influence on the market, primarily driven by its market capitalisation. Tether is included as the most important stable coin on the market, nominally pegged to the U.S. dollar (USD). The reason to investigate it is that there are some inconsistencies in its behaviour as opposed to the other four cryptocurrencies. This study found that the behaviour of Tether cryptocurrency daily average return time series pattern is highly nonlinear and chaotic in nature, whereas the other four cryptocurrencies (namely Bitcoin, Ethereum, XRP and Bitcoin Cash) daily average return time series were found to be linear in nature. To further study Tether’s nonlinear time series rich dynamics, this study deployed one category of the regime switching models popularly known as the threshold regressions. The study estimates fairly suggest that both the threshold autoregression (TAR) and smooth transition autoregressive (STAR) models with lag 1 are adequate to capture the rich nonlinear and chaotic dynamics of Tether’s daily average return time series.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance,Sociology and Political Science,Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Does fintech matter for financial inclusion and financial stability in BRICS markets?;Emerging Markets Review;2024-07

2. Harnessing Machine Learning for Predicting Cryptocurrency Returns;Global Business Review;2024-03-03

3. THE VALIDITY OF THE HEALTH BASED GROWTH HYPOTHESIS: THE TURKEY EXAMPLE;Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi;2023-06-29

4. A K-means clustering model for analyzing the Bitcoin extreme value returns;Decision Analytics Journal;2023-03

5. Dynamics of bitcoin prices and energy consumption;Chaos, Solitons & Fractals: X;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3