Abstract
Results from nanoindentation of aluminum single crystals deliver valuable information as model systems for understanding technical aluminum alloys. The effect of the crystal orientation and the azimuthal indenter orientation on indentation hardness and modulus was studied by Vickers indentation (max. load 10 mN) on single crystal surfaces with (100), (110), and (111) orientations. The average indentation hardness varied, depending on the crystallographic orientation, by 1.8%. The anisotropy of the elastic modulus (1.1% of the average modulus) is lowered (indentation averaging effect). This is predicted by explicit approximation of the contact problem (conical indenter, orthotropic material). It was found that indentation hardness and modulus vary periodically with the azimuthal indenter orientation on (100)- and (110)-oriented surfaces (relative amplitude of 1.8% for indentation hardness and 2.6% of the modulus). This is attributed to the combined effect of the indenter geometry and crystal symmetry. For the first time, this effect was quantified for aluminum single crystals.
Subject
General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献