A Novel Nonlinear Magnetic Equivalent Circuit Model for Magnetic Flux Leakage System

Author:

Kara Okan1ORCID,Çelik Hasan Hüseyin2

Affiliation:

1. Naval Petty-Officer Vocational School, National Defence University, Yalova 77720, Turkey

2. Department of Electrical and Electronics Engineering, Marmara University, Istanbul 34854, Turkey

Abstract

To ensure efficient inspection using the magnetic flux leakage (MFL) method, generating a flux density near the saturation level within the tested material is essential. This requirement brings high flux density conditions in the system’s pole regions. Hence, leakage flux within the slot is excessively triggered, leading to distortion of the defect signal. In this context, the system dimensions stand out as one of the most significant factors affecting the mentioned flux distributions. Therefore, various alternative solutions with different system dimensions arise in the design process of the MFL system. This study proposes a magnetic equivalent circuit (MEC) model to achieve optimal system design. The proposed MEC model is designed considering the nonlinear behavior of the material, leakage flux, and fringing effects. Verification results demonstrate that the MEC model consistently tracks the finite element analysis (FEA) results in calculating the flux densities. Furthermore, the relative errors in the flux density calculations of the tested material are at a maximum level of 10.2% and an average of 5.2% compared to the FEA. These findings indicate that the proposed MEC model can be effectively utilized in rapid prototyping and optimization procedures of MFL system design by providing fast solutions with reasonable accuracy.

Funder

Marmara University Scientific Research Projects Coordination Unit

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3