Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan

Author:

Yu Geun-Hye1,Song Myoungki1,Oh Sea-Ho1ORCID,Choe Seoyeong1ORCID,Jeon Hajeong1ORCID,Ko Dong-Hoon1ORCID,Bae Min-Suk1ORCID

Affiliation:

1. Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea

Abstract

This study investigated the aerosol particle properties and light absorption properties of brown carbon (BrC) by utilizing a seven-wavelength aethalometer, and analyzed NH4+, NO3−, SO42−, K+, K, organic carbon, elemental carbon, levoglucosan, and mannosan in PM2.5. The research was conducted in a rural area of Jeonnam, South Korea, during the winter season. In addition, the dithiothreitol assay-oxidative potential normalized to 9,10-phenanthrenequinone (QDTT-OP) was investigated throughout the study period. The absorption coefficient was found to be 2.6 to 5.6 times higher at 370 nm compared to 880 nm, suggesting the presence of light-absorbing substances in addition to black carbon (BC) particles. The estimated absorption coefficient of BrC370 was 29.9% of the total light absorption coefficient at 370 nm. Furthermore, BrC370 exhibited a strong affinity with levoglucosan while showing a weak correlation with K+, confirming the suitability of levoglucosan as a tracer for biomass burning. The QDTT-OP was 5.3 nM m−3, and highly correlated with the carbonaceous components levoglucosan and mannosan, suggesting a relatively high contribution of biomass combustion emissions to oxidative potential. Further research should be conducted to assess the health risks associated with future PM2.5 exposure related to biomass burning in the atmosphere.

Funder

Research Funds of Mokpo National University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3