Fault-Tolerant Multiport Converter for Hybrid Distribution Systems: Configuration, Control Principles and Fault Analysis

Author:

Negri Simone1ORCID,Ubezio Giovanni2,Faranda Roberto Sebastiano3ORCID

Affiliation:

1. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy

2. E.C & C. srl, 23889 Santa Maria Hoè, Italy

3. Dipartimento di Energia, Politecnico di Milano, 20121 Milan, Italy

Abstract

Multiport converters (MCs) are widely adopted in many applications, from renewable energy sources and storage integration to automotive applications and distribution systems. They are used in order to interface different energy sources, storage devices and loads with one single, simple converter topology in contrast to the traditional approach, which can require different solutions made by two-port converters. MCs allow for a reduction in the number of components and cascaded conversion stages with respect to an equivalent system of two-port converters, resulting in reduced complexity, dimensions and costs, as well as in improved reliability and enhanced efficiency. Nevertheless, some aspects related to the design of MCs are still worth further discussion when MCs are applied to hybrid AC/DC distribution systems. First, most converters are developed for one specific application and are not modular in structure. Furthermore, many of the proposed solutions are not equally suitable for AC and DC applications and they can introduce significant issues in hybrid distribution systems, with earthing management being particularly critical. Even though most available solutions offer satisfying steady-state and dynamic performances, fault behavior is often not considered and the possibility of maintaining controllability during faults is overlooked. Building on these three aspects, in this paper, a new MC for hybrid distribution systems is presented. An innovative circuit topology integrating three-phase AC ports and three-wire DC ports and characterized by a unique connection between the AC neutral wire and the DC midpoint neutral wire is presented. Its control principles and properties during external faults are highlighted, and extensive numerical simulations support the presented discussion.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3