STFEformer: Spatial–Temporal Fusion Embedding Transformer for Traffic Flow Prediction

Author:

Yang Hanqing1,Wei Sen1,Wang Yuanqing1

Affiliation:

1. Department of Traffic Engineering, College of Transportation Engineering, Chang’an University, Xi’an 710064, China

Abstract

In the realm of Intelligent Transportation Systems (ITSs), traffic flow prediction is crucial for multiple applications. The primary challenge in traffic flow prediction lies in the handling and modeling of the intricate spatial–temporal correlations inherent in transport data. In recent years, many studies have focused on developing various Spatial–Temporal Graph Neural Networks (STGNNs), and researchers have also begun to explore the application of transformers to capture spatial–temporal correlations in traffic data. However, GNN-based methods mainly focus on modeling spatial correlations statically, which significantly limits their capacity to discover dynamic and long-range spatial patterns. Transformer-based methods have not sufficiently extracted the comprehensive representation of traffic data features. To explore dynamic spatial dependencies and comprehensively characterize traffic data, the Spatial–Temporal Fusion Embedding Transformer (STFEformer) is proposed for traffic flow prediction. Specifically, we propose a fusion embedding layer to capture and fuse both native information and spatial–temporal features, aiming to achieve a comprehensive representation of traffic data characteristics. Then, we introduce a spatial self-attention module designed to enhance detection of dynamic and long-range spatial correlations by focusing on interactions between similar nodes. Extensive experiments conducted on three real-world datasets demonstrate that STFEformer significantly outperforms various baseline models, notably achieving up to a 5.6% reduction in Mean Absolute Error (MAE) on the PeMS08 dataset compared to the next-best model. Furthermore, the results of ablation experiments and visualizations are employed to clarify and highlight our model’s performance. STFEformer represents a meaningful advancement in traffic flow prediction, potentially influencing future research and applications in ITSs by providing a more robust framework for managing and analyzing traffic data.

Funder

Natural Science Basic Research Program of Shaanxi

111 project of Sustainable Development of Transportation in Western Urban Agglomeration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3