Study of Biocomposite Films Based on Cassava Starch and Microcrystalline Cellulose Derived from Cassava Pulp for Potential Medical Packaging Applications

Author:

Jeencham Rachasit12,Chiaoketwit Nantawat3,Numpaisal Piya-on14ORCID,Ruksakulpiwat Yupaporn13ORCID

Affiliation:

1. Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand

2. Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

3. School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

4. School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Abstract

This study aimed to develop biocomposite films based on cassava starch and microcrystalline cellulose (MCC) derived from cassava pulp for potential medical packaging applications. MCC was extracted from cassava pulp, and its structure and chemical composition, crystallinity, and thermal properties were characterized. The MCC showed a yield of 14.92% and crystallinity of 46.91%. Different MCC contents (1%, 3%, and 5% w/w of starch) were incorporated into cassava starch films. The effects of MCC contents on film properties, including morphology, thickness, mechanical strength, chemical interactions, moisture content, surface wettability, and water activity index, were studied. The effects of UV-C sterilization on the disinfection of starch/MCC on film properties were determined. Results showed that all starch/MCC films exhibited good transparency and thickness ranging from 127 to 144 µm. As MCC content increased from 1 to 5%, Young’s modulus and tensile strength of the films improved significantly from 112.12 to 488.89 MPa and 3.21 to 11.18 MPa, respectively, while elongation at break decreased from 44.74 to 4.15%. Incorporating MCC also reduced film surface wettability, with the water contact angle increasing from 69.17° to 102.82°. The starch/3%MCC holds promise as a biocomposite film for medical packaging applications, offering advantages in terms of good transparency, mechanical properties, and surface hydrophobicity. Furthermore, the absence of microbial growth in the sterilized gauze pad with sealing in the sterilized starch/3%MCC film confirms that the UV-C sterilization, 30 min for each side at 254 nm effectively eliminated any microorganisms present on the starch/3%MCC film without damaging the film properties. This finding highlights a reliable approach to ensuring the sterility of starch/MCC films for medical packaging applications.

Funder

This work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science, Research and Innovation Fund (NSRF).

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3