Enhancing Botnet Detection in Network Security Using Profile Hidden Markov Models

Author:

Mannikar Rucha1,Di Troia Fabio1ORCID

Affiliation:

1. Department of Computer Science, San Jose State University, One Washington Square, San Jose, CA 95192, USA

Abstract

A botnet is a network of compromised computer systems, or bots, remotely controlled by an attacker through bot controllers. This covert network poses a threat through large-scale cyber attacks, including phishing, distributed denial of service (DDoS), data theft, and server crashes. Botnets often camouflage their activity by utilizing common internet protocols, such as HTTP and IRC, making their detection challenging. This paper addresses this threat by proposing a method to identify botnets based on distinctive communication patterns between command and control servers and bots. Recognizable traits in botnet behavior, such as coordinated attacks, heartbeat signals, and periodic command distribution, are analyzed. Probabilistic models, specifically Hidden Markov Models (HMMs) and Profile Hidden Markov Models (PHMMs), are employed to learn and identify these activity patterns in network traffic data. This work utilizes publicly available datasets containing a combination of botnet, normal, and background traffic to train and test these models. The comparative analysis reveals that both HMMs and PHMMs are effective in detecting botnets, with PHMMs exhibiting superior accuracy in botnet detection compared to HMMs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3