Nanotomographic Analysis of Orthodontic Molar Tubes for Direct Bonding

Author:

Kłos Seweryn1,Janiszewska-Olszowska Joanna2ORCID,Grocholewicz Katarzyna2ORCID

Affiliation:

1. Private Dental Practice “Dentysta Rodzinny” in Człuchów, 77-300 Człuchów, Poland

2. Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland

Abstract

(1) Background: The most important part of an orthodontic attachment (bracket or tube) is the tube or slot for the insertion of the orthodontic wire. Aligning teeth along the archwire according to angular values preadjusted in the bracket slots (or tubes) requires a very precise size accordance between the archwires and slots. The aim of this study was to perform a nanotomographic analysis of the geometric features of molar tubes for direct bonding in terms of their dimensions and angles of their inner walls and analyze the presence of metallurgic imperfections. (2) Methods: Orthodontic tubes (n = 100) for upper right first molars from five different manufacturers (3M-Victory Series, Adenta-Bond Sing, Dentaurum-Ortho Cast M, GC-L LP, and ORMCO-Accent), 20 tubes each, were subjected to nanotomographic analysis. Measurements of the inner channel of the tubes, angles between the walls, and analysis of metallurgic imperfections were performed using high-resolution computed tomography. (3) Results: height measurements differed by 4–14% from ideal values declared by manufacturers, whereas the angles ranged from reducing by a maximum 1% comparing to values declared (hypodivergent walls) to increasing by a maximum 4.5% (divergent walls). (4) Conclusions: 1. The sizes of channels measured were slightly larger than those declared by manufacturers. 2. Slight deviations in wall parallelism and angles between the walls were found. 3. Some tubes were characterized by manufacturing defects of the metal. 4. Efforts should be made to further improve the production process of orthodontic attachments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3