Evaluation of the Performance of Pervious Concrete Inspired by CO2-Curing Technology

Author:

Muthu Murugan1ORCID,Sadowski Łukasz1ORCID

Affiliation:

1. Department of Materials Engineering, Wroclaw University of Science and Technology, 50-372 Wrocław, Poland

Abstract

Urban runoff is acidic in nature and mainly consists of heavy metals and sediments. In this study, the pervious concrete samples were cured in a CO2-rich environment and their performance under runoff conditions was evaluated by passing different solutions containing clay particles, heavy metal ions, and acid species. The compressive strength of these samples was reduced by up to 14% when they were cured in water instead of a CO2 environment. Heavy metal ions, including lead and zinc, in the simulated runoff were adsorbed in these pervious concrete samples by up to 96% and 80% at the end of the experiment, but the acid species in this runoff could leach calcium ions from the cement components during passage. Clay particles in the runoff were trapped in the flow channels of samples, which marginally reduced the percolation rate by up to 14%. Concrete carbonation reduced the release of calcium ions under runoff conditions, and zinc removal was relatively lower because of the nonavailability of hydroxyl sites in the interconnected pore structure. The weight and strength losses in the carbonated concrete samples were relatively lower at the end of the acid storage experiment, suggesting that CO2 curing reduces cement degradation in aggressive chemicals. The SEM and tomography images revealed the degraded microstructure, while the XRD results provided data on the mineralogical changes. CO2 curing improves the strength gain and service life of pervious concrete in runoff environments.

Funder

Narodowa Agencja Wymiany Akademickiej

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3