Quantitative Detection for Fatigue Natural Crack in Aero-Aluminum Alloy Based on Pulsed Eddy Current Technique

Author:

Sun Cheng1ORCID,Yu Yating1ORCID,Li Hanchao1,Wang Fenglong1,Liu Dong1

Affiliation:

1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Aero-space aluminum alloys, as vital materials in aerospace engineering, find extensive application in various aerospace components. However, prolonged usage often leads to the emergence of fatigue natural cracks, posing significant safety risks. Therefore, research on accurate quantitative detection techniques for the cracks in aerospace-aluminum alloys is of vital importance. Firstly, based on the three-points bending experimental model, this paper prepared the fatigue natural crack specimen, and the depth of the natural crack is calibrated. Then, given the complexity of geometric characteristics inherent in natural cracks, the pulsed eddy current signal under the different natural crack depth is acquired and analyzed using an experimental study. Finally, to better exhibit the non-linearity between PEC signal and crack depth, a GA-based BPNN algorithm is proposed. The Latin Hypercube method is considered to optimize the population distribution in the genetic algorithm. The results indicate that the characterization accuracy reaches 2.19% for the natural crack.

Funder

National Nature Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3