How Does the Concentration of Technetium-99m Radiolabeled Gold Nanoparticles Affect Their In Vivo Biodistribution?

Author:

Apostolopoulou Adamantia12,Salvanou Evangelia-Alexandra1ORCID,Chiotellis Aristeidis1ORCID,Pirmettis Nektarios N.1,Pirmettis Ioannis C.1ORCID,Xanthopoulos Stavros1,Koźmiński Przemysław3ORCID,Bouziotis Penelope1ORCID

Affiliation:

1. National Center for Scientific Research “Demokritos”, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Agia Paraskevi, 15341 Athens, Greece

2. Department of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece

3. Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland

Abstract

Gold nanoparticles (AuNPs) radiolabeled with therapeutic and diagnostic radioisotopes have been broadly studied as a promising platform for early diagnosis and treatment of many diseases including cancer. Our main goal for this study was the comparison of the biodistribution profiles of four different concentrations of gold nanoconjugates radiolabeled with Technetium-99m (99mTc). More specifically, AuNPs with an average diameter of 2 nm were functionalized with a tridentate thiol ligand. Four different concentrations were radiolabeled with 99mTc-tricarbonyls with high radiolabeling yields (>85%) and were further purified, leading to radiochemical purity of >95%. In vitro stability of the radiolabeled nanoconstructs was examined in cysteine and histidine solutions as well as in human serum, exhibiting robust radiolabeling up to 24 h post-preparation. Moreover, in vitro cytotoxicity studies were carried out in 4T1 murine mammary cancer cells. In vivo tracking of the radiolabeled nanoconjugates at both concentrations was examined in normal mice in order to examine the effect of AuNPs’ concentration on their in vivo kinetics. Our work demonstrates that varying concentrations of radiolabeled AuNPs lead to notably different biodistribution profiles.

Funder

Institute of Nuclear Chemistry and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3