Towards Media Monitoring: Detecting Known and Emerging Topics through Multilingual and Crosslingual Text Classification

Author:

Kapočiūtė-Dzikienė Jurgita12ORCID,Ungulaitis Arūnas3

Affiliation:

1. JSC Tilde IT, Jasinskio Str. 12, LT-01112 Vilnius, Lithuania

2. Department of Applied Informatics, Vytautas Magnus University, Universiteto Str. 10, Akademija, LT-53361 Kaunas, Lithuania

3. JSC Novian Pro, Gynėjų Str. 14, LT-01109 Vilnius, Lithuania

Abstract

This study aims to address challenges in media monitoring by enhancing closed-set topic classification in multilingual contexts (where both training and testing occur in several languages) and crosslingual contexts (where training is in English and testing spans all languages). To achieve this goal, we utilized a dataset from the European Media Monitoring webpage, which includes approximately 15,000 article titles across 18 topics in 58 different languages spanning a period of nine months from May 2022 to March 2023. Our research conducted comprehensive comparative analyses of nine approaches, encompassing a spectrum of embedding techniques (word, sentence, and contextual representations) and classifiers (trainable/fine-tunable, memory-based, and generative). Our findings reveal that the LaBSE+FFNN approach achieved the best performance, reaching macro-averaged F1-scores of 0.944 ± 0.015 and 0.946 ± 0.019 in both multilingual and crosslingual scenarios. LaBSE+FFNN’s similar performance in multilingual and crosslingual scenarios eliminates the need for machine translation into English. We also tackled the open-set topic classification problem by training a binary classifier capable of distinguishing between known and new topics with the average loss of ∼0.0017 ± 0.0002. Various feature types were investigated, reaffirming the robustness of LaBSE vectorization. The experiments demonstrate that, depending on the topic, new topics can be identified with accuracies above ∼0.796 and of ∼0.9 on average. Both closed-set and open-set topic classification modules, along with additional mechanisms for clustering new topics to organize and label them, are integrated into our media monitoring system, which is now used by our real client.

Funder

European Regional Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3