RPC-EAU: Radar Plot Classification Algorithm Based on Evidence Adaptive Updating

Author:

Yang Rui1,Zhao Yingbo2

Affiliation:

1. Engineering Comprehensive Training Center, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Accurately classifying targets and clutter plots is crucial in radar data processing. It is beneficial for filtering out a large amount of clutters and improving the track initiation speed and tracking accuracy of real targets. However, in practical applications, this problem becomes difficult due to complex electromagnetic environments such as cloud and rain clutter, sea clutter, and strong ground clutter. This has led to poor performance of some commonly used radar plot classification algorithms. In order to solve this problem and further improve classification accuracy, the radar plot classification algorithm based on evidence adaptive updating (RPC-EAU) is proposed in this paper. Firstly, the multi-dimensional recognition features of radar plots used for classification are established. Secondly, the construction and combination of mass functions based on feature sample distribution are designed. Then, a confidence network classifier containing an uncertain class was designed, and an iterative update strategy for it was provided. Finally, several experiments based on synthetic and real radar plots were presented. The results show that RPC-EAU can effectively improve the radar plot classification performance, achieving a classification accuracy of about 0.96 and a clutter removal rate of 0.95. Compared with some traditional radar pattern recognition algorithms, it can improve by 1 to 10 percentage points. The target loss rate of RPC-EAU is also the lowest, only about 0.02, which is about one third to one half of the comparison algorithms. In addition, RPC-EAU avoids clustering all radar points in each update, greatly saving the computational time. The proposed algorithm has the characteristics of high classification accuracy, low target loss rate, and less computational time. Therefore, it is suitable for radar data processing with high timeliness requirements and multiple radar plots.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Reference44 articles.

1. He, Y., Xiu, J.J., and Liu, Y. (2022). Radar Data Processing with Applications, Electronic Industry Press. [4th ed.].

2. Researches on the Method of Clutter Suppression in Radar Data Processing;Luo;Syst. Eng. Electron.,2016

3. Inshore ambiguity clutter suppression method aided by clutter classification;Duan;J. Xidian Univ.,2021

4. Method of Radar Plot True and False Identification Based on Improved KNN;Lin;Mod. Radar,2020

5. An Identification Method of True and False Plots Based on PSO-SVM Algorithm;Peng;Radar Sci. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3