Application of Research on Risk Assessment of Roadway Roof Falls Based on Combined Weight Matter Element Extension Model

Author:

Wang Shenggang1,Yuan Chao123ORCID,Li Lianxin1ORCID,Su Xiaowei1,Wang Chao1

Affiliation:

1. School of Resources & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China

3. Hunan Key Laboratory of Safe Mining Techniques of Coal Mines, Xiangtan 411201, China

Abstract

Roof falls in coal mine roadways are the main causes of many casualties, shutdowns and production plan delays. To understand the relationship between the influencing factors of roadway roof fall accidents and the importance ranking of the accidents, we will reduce safety accidents in coal mines. To enable the timely prediction and control of roadway roof fall risks, based on the investigation of many roadway roof fall risk factors, 12 evaluation indexes such as the roadway roof rock thickness, geological conditions and roadway section shape were selected. An evaluation index system of roadway roof fall risks is constructed. A risk degree standard of roadway roof falls is proposed. The risk evaluation model of roadway roof falls was established by using the combination weight of the analytic hierarchy process (AHP), entropy weight method (EW) and matter element extension theory. According to the principle of the maximum membership degree, the risk degree of roadway roof falls is determined. Based on Java Web, a risk assessment system for roadway roof falls was developed. We name the system Multiple Weight-Material Element Web (MW-MEW). The MW-MEW system was used to evaluate the risk degree of roof falls in the C9 return airway of the Xingu Coal Mine. Compared with the evaluation results of the AHP matter element extension model, it is found that the evaluation results of the MW-MEW system are more in line with the actual engineering conditions. The successful application of the MW-MEW system will provide new avenues for the quantitative evaluation of roof fall risks in coal mine roadways.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Department of Education Outstanding Youth Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3