Investigation on Surface Quality of a Rapidly Solidified Al–50%Si Alloy Component for Deep-Space Applications

Author:

Chaieb Oussama,Olufayo Oluwole A.ORCID,Songmene Victor,Jahazi MohammadORCID

Abstract

To meet the requirements for high-performance products, the aerospace industry increasingly needs to assess the behavior of new and advanced materials during manufacturing processes and to ensure they possess adequate machinability, as well as high performance and an extensive lifecycles. Over the years, industrial research works have focused on developing new alloys with an increased thermal conductivity as well as increased strength. High silicon content aluminum (Al–Si) alloys, due to their increased thermal conductivity, low coefficient of thermal expansion, and low density, have been identified as suitable materials for space applications. Some of these applications require the use of intricate parts with tight tolerances and surface integrity. These challenges are often tied to the machining conditions and strategies, as well as to workpiece materials. In this study, experimental milling tests were performed on a rapidly solidified (RS) Al–Si alloy with a prominent silicon content (over 50%) to address challenges linked to material expansion in deep space applications. The tests were performed using a polycrystalline cubic boron nitride (PCBN) tool coated with amorphous diamond to reduce tool wear, material adhesion, surface oxidation, and particle diffusion. The effects of cutting parameters on part surface roughness and microstructure were analyzed. A comparative analysis of the surface with a conventionally utilized Al6061-T6 alloy showed an improvement in surface roughness measurements when using the RS Al–Si alloy. The results indicated that lower cutting speed and feed rate on both conventional and RS Al–Si alloys produced a better surface finish. Reduced vibrations were also identified in the RS Al–Si alloy, which possessed a stable cutting time at low cutting speeds but only displayed notable vibrations at cutting speeds above 120 m/min.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3