The Structural and Mechanical Properties of the UHMWPE Films Mixed with the PE-Wax

Author:

Dayyoub TarekORCID,Olifirov Leonid K.,Chukov Dilyus I.ORCID,Kaloshkin Sergey D.,Kolesnikov Evgeniy,Nematulloev Saidkhodzha

Abstract

Since obtaining a highly oriented structure based on a large-scale commercial ultra-high molecular weight polyethylene (UHMWPE) is considered very difficult due to its high molecular weight and melting index, modifying the structure of these cheap commercial UHMWPE brands into a supra-molecular structure with fiber-forming properties by adding a small amount of polyethylene wax (PE-wax) will provide the possibility to obtain highly oriented UHMWPE products with enhanced mechanical and tribological properties. In this work, highly oriented UHMWPE/PE-wax films were prepared. The PE-wax affected the UHMWPE as an intermolecular lubricant. The obtained lamellar structure of the UHMWPE/PE-wax composites had a better processability. The UHMWPE and UHMWPE/PE-wax structures for the xerogels and the films were studied by using differential scanning calorimetry and scanning electron microscopy. The PE-wax presence enhanced the mechanical properties of the UHMWPE/PE-wax films to a high degree. The highest average value of the tensile strength was 1320 MPa (an increase of 78%) obtained by adding a PE-wax content of 1.0 wt.%, and the highest average value of the Young’s modulus was 56.8 GPa (an increase of 71%) obtained by adding a PE-wax content of 2.0 wt.%. The addition of the PE-wax increased the work of fracture values of the UHMWPE/PE-wax films up to 233%. The formation of the cavities was observed in the virgin UHMWPE films more than in the UHMWPE/PE-wax films, and the whitening of the oriented films was related to the crystallization process more than to the cavitation phenomenon. The coefficient of friction of the oriented UHMWPE/PE-wax films improved by 33% in comparison with the isotropic UHMWPE, and by 7% in comparison with the oriented virgin UHMWPE films.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3