Optimal Transducer Placement for Deep Learning-Based Non-Destructive Evaluation

Author:

Kim Ji-Yun1,Han Je-Heon1ORCID

Affiliation:

1. Department of Mechanical Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea

Abstract

In this study, the Convolution Neural Network (CNN) algorithm is applied for non-destructive evaluation of aluminum panels. A method of classifying the locations of defects is proposed by exciting an aluminum panel to generate ultrasonic Lamb waves, measuring data with a sensor array, and then deep learning the characteristics of 2D imaged, reflected waves from defects. For the purpose of a better performance, the optimal excitation location and sensor locations are investigated. To ensure the robustness of the training model and extract the feature effectively, experimental data are collected by slightly changing the excitation frequency and shifting the location of the defect. The high classification accuracy for each defect location can be achieved. It is found that the proposed algorithm is also successfully applied even when a bar is attached to the panel.

Funder

National Research Foundation of Korea

GRRC program of Gyeonggi province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3