Mathematical Integration of Remotely-Sensed Information into a Crop Modelling Process for Mapping Crop Productivity

Author:

Nguyen Van Cuong,Jeong Seungtaek,Ko JonghanORCID,Ng Chi Tim,Yeom JongminORCID

Abstract

Remote sensing is a useful technique to determine spatial variations in crop growth while crop modelling can reproduce temporal changes in crop growth. In this study, we formulated a hybrid system of remote sensing and crop modelling based on a random-effect model and the empirical Bayesian approach for parameter estimation. Moreover, the relationship between the reflectance and the leaf area index was incorporated into the statistical model. Plant growth and ground-based canopy reflectance data of paddy rice were measured at three study sites in South Korea. Spatiotemporal vegetation indices were processed using remotely-sensed data from the RapidEye satellite and the Communication Ocean and Meteorological Satellite (COMS). Solar insulation data were obtained from the Meteorological Imager (MI) sensor of the COMS. Reanalysis of air temperature data was collected from the Korea Local Analysis and Prediction System (KLAPS). We report on a statistical hybrid approach of crop modelling and remote sensing and a method to project spatiotemporal crop growth information. Our study results show that the crop growth values predicted using the hybrid scheme were in statistically acceptable agreement with the corresponding measurements. Simulated yields were not significantly different from the measured yields at p = 0.883 in calibration and p = 0.839 in validation, according to two-sample t tests. In a geospatial simulation of yield, no significant difference was found between the simulated and observed mean value at p = 0.392 based on a two-sample t test as well. The fabricated approach allows us to monitor crop growth information and estimate crop-modelling processes using remote sensing data from various platforms and optical sensors with different ground resolutions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Remote Sensing of Vegetation: Principles, Techniques, and Applications;Jones,2010

2. Within‐Season Calibration of Modeled Wheat Growth Using Remote Sensing and Field Sampling

3. GRAMI: A Crop Model Growth Model that Can Use Remotely Sensed Information;Maas,1992

4. A Model for Calculating Light Interception by a Grain Sorghum Canopy

5. User’s Guide to SORGF: A Dynamic Grain SORGHUM Growth Model with Feedback Capacity;Maas,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3