Hybrid Urban Canyon Pedestrian Navigation Scheme Combined PDR, GNSS and Beacon Based on Smartphone

Author:

Ye JunhuaORCID,Li Yaxin,Luo Huan,Wang Jingxian,Chen Wu,Zhang Qin

Abstract

This study presents a comprehensive urban canyon pedestrian navigation scheme. This scheme combines smart phone internal MEMS sensors, GNSS and beacon observations together. Heading estimation is generally a key issue of the PDR algorithm. We design an orientation fusion algorithm to improve smart phone heading using MEMS measurements. Static and kinematic tests are performed, superiority of the improved heading algorithm is verified. We also present different heading processing solutions for comparison and analysis. Heading bias increases with time due to error accumulation and model inaccuracy. Thus, we develop a related heading calibration method based on beacons. This method can help correct smart phone headings continuously to decrease cumulative error. In addition to PDR, we also use GNSS and beacon measurements to integrate a fusion location. In the fusion procedure, we design related algorithms to adjust or limit the use of these different type observations to constrain large jumps in our Kalman filter model, thereby making the solution stable. Navigation experiments are performed in the streets of Mong Kok and Wanchai, which are typically the most crowded areas of Hong Kong, with narrow streets and many pedestrians, vehicles and tall buildings. The first experiment uses the strategy PDR + GNSS + beacon, in east–west orientation street, in which 10 m positioning error is improved from 30 % (smart phone internal GNSS) to 80 % and in south–north orientation street, in which 15 m positioning error is improved from 20 % (smart phone internal GNSS) to 80 % . The second experiment performs two long-distance tests without any beacons, in which the fusion scheme also has significant improvement, that is, 10 m positioning error is improved from 38 % to 60 % .

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3