Renewable Energy Tracking and Optimization in a Hybrid Electric Vehicle Charging Station

Author:

Petrusic Andrija,Janjic AleksandarORCID

Abstract

The increasing electric vehicle fleet requires an upgrade and expansion of the available charging infrastructure. The uncontrolled charging cycles greatly affect the electric grid, and for this reason, renewable energy sources and battery storage are getting incorporated into a hybrid charging station solution. Adding a renewable source and a battery to the charging station can help to “buffer” the power required from the grid, thus avoiding peaks and related grid constraints. To date, the origin of the energy coming from the battery has not been traced. In this paper, a solution of the hybrid electric vehicle charging station coupled with the small-scale photovoltaic system and battery energy storage is proposed to eliminate the adverse effects of uncontrolled electric vehicle charging, with the exact calculation of renewable energy share coming from energy stored in the battery. The methodology for the multicriteria optimization of the charging/discharging schedule of a battery and electric vehicle charging level is based on multi-attribute utility theory. The optimization criteria include the minimization of charging costs, maximization of renewable energy (from both the solar plant and the battery), and the minimization of battery degradation. The problem is solved using a genetic algorithm optimization procedure adapted to the multicriteria optimization function. The methodology is tested on an illustrative example, and it is proven that the decision-maker’s preferences greatly affects the choice of the optimal strategy and the optimal battery capacity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Electric Vehicle Technology Explained;Larminie,2003

2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles;Ehsani,2005

3. Pihef: Plug-In Hybrid Electric Factor

4. Lessons Learned on Early Electric Vehicle Fast-charging Deployments, White Paper for the International Council on Clean Transportationhttps://www.theicct.org/sites/default/files/publications/ZEV_fast_charging_white_paper_final.pdf

5. Electric vehicles charging using photovoltaic: Status and technological review

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3