Cyanobacterial Potential for Restoration of Loess Surfaces through Artificially Induced Biocrusts

Author:

Palanački Malešević Tamara,Dulić Tamara,Obreht Igor,Trivunović Zorana,Marković Rastko,Kostić Bojan,Važić Tamara,Meriluoto JussiORCID,Svirčev Zorica

Abstract

Loess is a highly porous and easily erosive aeolian sediment covering approximately 10% of the Earth’s surface. The weak vegetation cover and high wind speeds in many of these regions make loess sediment the main source of dust in the atmosphere. Dust particles deteriorate air quality and affect soils, crops, water systems, and animal and human health. The commonly used method for combating desertification is revegetation. However, planting various vascular plant species in loess landscapes did not show any long-lasting positive effects. This study aims to assess the potential of cyanobacterial strains for the restoration of exposed loess surfaces through the assisted development of biological loess crusts (BLCs). Isolated cyanobacterial loess strains were screened for the traits (toxicity, biomass and polysaccharide production) desirable for their use in restoration purposes. By simulating semi-arid environmental conditions in specially designed chambers, the potential of cyanobacterial loess strains for assisted development of BLCs and the mechanisms of loess stabilization have been evaluated by chlorophyll a accumulation and microscopic examination. It was confirmed that cyanobacteria have the ability to interact with loess particles resulting in BLC formation, which keeps the particles immobilized and the sediment below the particles stabilized.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3