Exudates as Landmarks Identified through FCM Clustering in Retinal Images

Author:

Hamad Hadi,Dwickat Tahreer,Tegolo Domenico,Valenti CesareORCID

Abstract

The aim of this work was to develop a method for the automatic identification of exudates, using an unsupervised clustering approach. The ability to classify each pixel as belonging to an eventual exudate, as a warning of disease, allows for the tracking of a patient’s status through a noninvasive approach. In the field of diabetic retinopathy detection, we considered four public domain datasets (DIARETDB0/1, IDRID, and e-optha) as benchmarks. In order to refine the final results, a specialist ophthalmologist manually segmented a random selection of DIARETDB0/1 fundus images that presented exudates. An innovative pipeline of morphological procedures and fuzzy C-means clustering was integrated in order to extract exudates with a pixel-wise approach. Our methodology was optimized, and verified and the parameters were fine-tuned in order to define both suitable values and to produce a more accurate segmentation. The method was used on 100 tested images, resulting in averages of sensitivity, specificity, and accuracy equal to 83.3%, 99.2%, and 99.1%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Detection of Hard Exudates in Color Fundus Images of the Human Retina

2. Extraction of Exudates and Hemorrhage in Ocular Fundus Image Using Morphological Operations;Priya;Int. J. Sci. Eng. Res.,2014

3. Convolutional Neural Networks for Diabetic Retinopathy

4. DIARETDB1 diabetic retinopathy database and evaluation protocol;Kauppi;BMVC,2007

5. Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3