Evaluation of the Level of Reliability in Hazardous Technological Processes

Author:

Gabriska Darja

Abstract

In an automated systems environment is very important to predicted failures or unexpected situations to achieve system reliability. Failure of such systems can cause serious property damage, the environment, damage to human health or cause death. The essential task is to determine the tolerable and acceptable risk. The required level of risk for safety-critical systems can be achieved by using international technical standards and applying safety functions. Safety functions are implemented using an electrical/electronic/programmable electronics (E/E/PE) safety-related system. Technical standards offer the aspect of balancing risk tolerability according to the relevant, reliable safety functions. Based on the specific architecture of the whole system, it is possible to determine the maximum failure rate of the probability of failure on demand (PFDSYS) of the selected architecture. Subsequent application of reliability analysis using the event tree analysis (ETA) and fault tree analysis (FTA) methods can optimize the failure rate of the entire system. Application of reliability analysis using event tree analysis (ETA) and fault tree analysis (FTA) methods can only theoretically optimize the failure rate of the entire system with constant initial conditions and constant parameters of the reliability functions. The article proposes a new methodology for dynamic analysis of the state of system reliability as a function of the system operation time, maintenance frequency and system architecture. As a result of the methodology is a library of standard element architectures and simulation models which allows predicting and optimizing the reliability of E/E/PE safety-related systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. A new bitwise voting strategy for safety-critical systems with binary decisions

2. IEC 61511-3:2016, Functional Safety—Safety Instrumented Systems for the Process Industry Sector—Part 3: Guidance for the Determination of the Required Safety Integrity Levels,2016

3. Safety Critical Systems Handbook;Smith,2010

4. Reliability Evaluation of Engineering Systems: Concepts and Techniques;Billinton,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3