Abstract
During 2020, the world has experienced extreme vulnerability in the face of a disease outbreak. The coronavirus disease 2019 (COVID-19) pandemic discovered in China and rapidly spread across the globe, infecting millions, causing hundreds of thousands of deaths, and severe downturns in the economies of countries worldwide. Biosurfactants can play a significant role in the prevention, control and treatment of diseases caused by these pathogenic agents through various therapeutic, pharmaceutical, environmental and hygiene approaches. Biosurfactants have the potential to inhibit microbial species with virulent intrinsic characteristics capable of developing diseases with high morbidity and mortality, as well as interrupting their spread through environmental and hygiene interventions. This is possible due to their antimicrobial activity, ability to interact with cells forming micelles and to interact with the immune system, and compatibility with relevant processes such as nanoparticle synthesis. They, therefore, can be applied in developing innovative and more effective pharmaceutical, therapeutics, sustainable and friendly environmental management approaches, less toxic formulations, and more efficient cleaning agents. These approaches can be easily integrated into relevant product development pipelines and implemented as measures for combating and managing pandemics. This review examines the potential approaches of biosurfactants as useful molecules in fighting microbial pathogens both known and previously unknown, such as COVID-19.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献